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Summary of Controversies with the
Standard Model of Structure Formation

* Too big to fail: evident in dSphs of MW and M3 1| (makes
“unlucky” Milky Way less likely explanation). May be explained in
LCDM if SN feedback is very efficient and most dwarfs have been
orbiting for a long time and MW mass is low.

e Cores in MW satellites: controversial at this point;
imperative to get additional data. LCDM may explain this for the
most massive satellites

* Missing satellites: persists to today, at some level. May be
explained by reionization suppression + inefficient galaxy formation
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The SIDM model

o
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Interesting phenomenology if

o/m =1 cm?/g = 2 barn/Gev = neutron-proton scattering
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s this a crazy idea!

Self-Interactions are a generic consequence of
many models beyond the Standard Model

If your prejudice is that new physics
can only be at O(TeV), then this
large cross-sections will seem crazy
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s this a crazy idea!

Self-Interactions are a generic consequence of
many models beyond the Standard Model

Examples:

Asymmetric DM - Nussinov (1985);Kaplan (1992);Kaplan,Luty, Zurek (2009); Shelton, Zurek (201 1);
Buckley, Randall (201 I'); Morrissey, Sigurdson, Tulin (2010); Buckley (201 1); Lin, Hai-Bo Yu, Zurek (201 1).

Hidden Charge DM - Feng, Tu, Hai-Bo Yu (2008); Ackerman, Buckley, Carroll, Kamionkowski
(2008);Feng, Kaplinghat, Tu, HBY (2009).

Atomic DM = Foot (2003); Kaplan, Krnjaic, Rehermann,Wells (2009);Feng, Kaplinghat, Tu, Hai-Bo Yu
(2009);Cline, Liu,Wei Xue (2012);Francis-Yan Cyr-Racine,Kris Sigurdson (201 3).

Double Disk DM - Fan, Katz, Randall, Reece (201 3); McCullough,Randall (2013)
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Phenomenology of DM Self-Interactions
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Phenomenology of DM Self-Interactions

Sperger| & Steinhardt 2000 0}

———_} _
[~ P Urel

Elastic - Velocity Independent - Isotropic (e

Where T'/Hy > 1 (central regions of DM halos)
® The energy transfer results in isothermal
® The isotropic scattering produces

® [he hot dense medium results in

® |nh merging systems the drag that the DM experiences would be
different to that of the collisionless galaxies, resulting in an
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Results from cosmological simulations - Halo densities,
shapes & substructure

50 Mpc/h



Results from cosmological simulations - Halo densities,
shapes & substructure

ACDM ASIDM

o/m=1cm? /g

200 Kpc/h
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Results from cosmological simulations - Halo densities

Observed o/m=1cm?/g o/m=0.1-0.5 cm?/g
0.06-0.025
Clusters [Msun/pc?] 0.005-0.004 ~0.04
700000 e e ot o 2506 o & [Msun/pc?]
km/s Read 2009 Newman et al.
2009,201 |
0.5-0.01
Low-Mass [Msun/pc3] : - ~0.2-0.1
Spirals 2c;joe5,B SanchesSalceie '?o%”s,eéfl}o [Msun/pc3]

50-130 km/s | de Naray etal.2008,2010, Oh et
al .201 1, Salucci et al. 2012

~0. 1
MA'A% dSphS Msun/E J U=V, ""‘05-02
20-50 km/s chfB'gJJélilf'ﬁ?&ﬁé.fiéﬁ| [Msun/ PC3] [Msun/ PC3]
Amorisco & Evans 2012, Wolf &
Bullock 2012

Rocha et al. 2013
Peter et al. 2013
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Work in progress - Dwarfs
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Results from cosmological simulations - Halo shapes
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o O
o
| | 1 | 1l #

Fraction
o
DN

O
o

N

NN
% |||||| 5\\III|II\\|IIII\ ||| \\]\llllllll

02040608 0 0040608 0 0.20.40.60.8
Ellipticity e

/]

-)

o/m < 1 cm?/g looks more likely!

This is more than an order of magnitude less stringent than Miralda-Escude (2002),
the reason is that:

 Halos get spherical only within the cores
* If inner parts have flattened density, outer parts have even greater weight.
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Results from cosmological simulations -

1 |
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Work in progress - Merging clusters

Dissosiative Clusters

DM+Gas
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Work in progress - Merging clusters

Dissosiative Clusters
|

O DM+Gas

® DM
O Gas

@ Galaxies

offset offset

Tuesday, September 10, 13




Work in progress - Merging clusters

Observations
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Work in progress - Merging clusters

Observations
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Work in progress - Merging clusters

Observations
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Work in progress - Merging clusters

Predictions vs. Observations

MERGING

. CLUSTER
Importance Sampling COLLABORATION

Vline—of—sight

Projected
Separation

650 Mpc/h
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Conclusions

® SIDM with 0/m < | cm?/g is not ruled out by any
observations

® Cross-sections of 0/m ~ 0.5 cm?/g can solve the
cusp/core problem and TBTF while still consistent
with cluster observations.

® We still need to understand the effect of Baryons
however.

® Merging clusters are a promising way to probe the
o/m > 0.1 cm?/g regime.
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Results from cosmological simulations
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Rocha et al. 2013
Peter et al. 2013
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Results from cosmological simulations -
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Rocha et al. 2013
Peter et al. 2013

Tuesday, September 10, 13



Results from cosmological simulations -
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Work in progress - More simulations
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Work in progress - More simulations
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Results from cosmological simulations -
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Astrophysical Constraints

Predictions Observations

Phenomenology
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Evidence for lower central DM densities than DM only
simulations predict across all scales

Galaxy cluster densities
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Simulating DM Self-Interactions -

Spergerl| & Steinhardt 2000 o)
e F — ,0 — ) Uprel
T

Elastic - Velocity Independent - Isotropic

phase-space evolution given by the Boltzmann Eq.
with a hard-sphere collision operator

Df(X7 V? t)

=T
Dt f?

/d Vl/dQ v —vi| [ f(x, V', t)f(x,Vv1,t) — f(x,v,t)f(x,v1,t)]
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Simulating DM Self-Interactions -

Spergerl| & Steinhardt 2000 o)
e e T =p(Z) v
T

Elastic - Velocity Independent - Isotropic

phase-space evolution given by the Boltzmann Eq.
with a hard-sphere collision operator
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Simulating DM Self-Interactions

large mean free short mean
paths free paths
l % — 0.1 — 100 cm?/g l
Vlavsov equation Fluid equations
solved with solved with

collisionless N-body hydro methods
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Simulating DM Self-Interactions

large mean free short mean
paths free paths
l‘ % — 0.1 — 100 cm?/g l
Vlavsov equation Fluid equations
solved with solved with
collisionless N-body hydro methods

Need to step back and derive an algorithm
from the Boltzmann Equation
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Simulating DM Self-Interactions -

Consistent Pair-Wise Probability

hsi
gji :/ AW (|x'], hst)W (10%i + X[, hsi)
0
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Simulating DM Self-Interactions -

Wind Tunnel Test

Interaction rate
converges to the
expected value
when hsi >0.2%
(the interparticle
separation)

0.6 0.8 1.0 1.2 1.4 1.6
hsi(pog/M)/?

Rocha et al. 2013
Peter et al. 2013
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Wind Tunnel Test
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Results from cosmological simulations -
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Constraints from:
Predictions vs. Observations

UrsMin 4
CVnl
Fornax
Sextans

CDM SIDM10
SIDM1 . CDM
vdSIDMa vdSIDMb SIDM1

- vdSIDMa vdSIDMb

Zavala,Vogelsberger and Walker 2012
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Constraints from:
Predictions vs. Observations

Sextans

CDM SIDM10

SIDM1 CDM
\ vdSIDMa vdSIDMb SIDM1

- vdSIDMa vdSIDMb
4

Zavala,Vogelsberger and Walker 2012
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Results from cosmological simulations - Halo shapes
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Results from cosmological simulations - Halo shapes

We see surface density (or
gravitational potentials) in
projection.
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The TKO of SIDM eg

Miralda-Escude (2002)

Requires a non-circularly-symmetric
surface density at r > 70 kpc.

Assume e=0if I'/Hg 2> 1

= o/m < 0.02 cm?/q.

* 1a_ / A0S
3a—

AO1

MS 2137-23
Sand et al. 2008
Tightest constraint by far (by > 10x)!
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* We see surface density (or gravitational
potentials) in projection.

* If inner parts have flattened density, outer parts
have even greater weight.
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* We see surface density (or gravitational
potentials) in projection.

* If inner parts have flattened density, outer parts
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* We see surface density (or gravitational
potentials) in projection.

* If inner parts have flattened density, outer parts
have even greater weight.
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Previous Constraints

Reference  Constraint [cm? /] From Problem
Yoshidal et. al Cluster
~ 0. . One cluster
2000 o/m <~0.1 density core .
Dave et. al Dwarfs Narrow mass
o/m = 0.1-10 ,
2001 density Cores range
Gnedin & g/m < 0.3 Subhalo Ovesllle;rt];Toated
Ostriker 2001 ' evaporation .
evaporation
Miralda-Escude Overestimated

o/m < 0.02 Halo shapes

2002 halo sphericity
High central
Ranczl?)I(I)Set al. o/m < 0.7-1.25| Bullet Cluster| densities and

relative vel.
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Yoshidal et. al i< 0.1 Cluster Ore-cluster
2000 TSP densitycore | — o
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Previous Constraints

Reference  Constraint [cm? /] From Problem
Yoshidal et. al i< 0.1 Cluster Ore-cluster
2000 a density core | =
Dave et. al Dwarfs Narrow mass
o/m = 0.1-10 :
2001 density Cores range
. imated
Gnedin & A Subhalo Overelsltl . ate
Ostriker 2001 | =/ ~ "7 | evaporation RN
evaporation
Miralda-Escude| =~ _ e Overestimated
2002 U/l N V.U 1 1alv DllalJCD halo spher|c|ty
High central
Randall et al. i
5008 o/m < 0.7-1.25|Bullet Cluster| densities and

relative vel.
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Today’s Constraints

Reference

Constraint [cm? /g]

From

Problem

Rocha et.al 2012

Pater et al 2012 | @/ M~0.1-0.5 | cores & shapes | extrapolations
Dave et. al / Narrow mass
o/m = 0.1-10 | Dwarfs cores
2001 range
High central
Randall et al. , 8
a 2?)081: a o/m < 0.7-125|Bullet Cluster| densities and
relative vel.
Vogelsberger et al.2012 O'/m > 0.1 MW dwarfs MW dwarfs only
Zavala et al. 2012 Veloutybceler?eeenddeednce may (resolution?)
Merging . .
MCC Time will tell
Clusters
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ldentical Abundance of Halos
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|
100 200
NFW rg [kpc] (CDM)

* Vmax/Rmax similar
to CDM
*Vmax-Rmax relation
unchanged

Rocha et al. 2012
arXiv:1208.3025




Table 1: Simulations discussed in this paper.
Volume Number of Particles ~ Particle Mass ~ Force Softening ~ Smoothing Length ~ Cross-section
Lpox [h~1 Mpc] Np mp [h"Mg]  e[h™ T kpc] hg [h"tkpel  o/m[cm?/g]

CDM-50 50 5123 6.88 x 107 1.0
CDM-25 25 5123 8.59 x 10° 0.4
CDM-Z11 (3Ryir)* 2.5 x 100+ 1.07 x 109% 0.3
CDM-Z12 (3Ryir)* 5.6 x 107* 1.34 x 10°* 0.1

SIDMg 1-50 50 5123 6.88 x 107 1.0
SIDMg 1-25 5123 8.59 x 100 0.4
SIDMg 1-Z11 L) 2.5 x 100% 1.07 x 105% 0.3
SIDMg 1-Z12 - 5.6 x 107* 1.34 x 10°% 0.1

SIDM;-50 5123 6.88 x 107 1.0
SIDM;-25 5123 8.59 x 100 0.4
SIDM;-Z11 2.5 x 106% 1.07 x 105% 0.3
SIDM;-Z12 - 5.6 x 107* 1.34 x 10°% 0.1
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Summary of Controversies with the
Standard Model of Structure Formation

Vinfal ~ 10 km/s Vinfall ~ 30 km/s

No stars Springel et al. 2008
100,000 (Aquarius project)

10,000

1000

Strong observational biases

— (Koposov et al. 2008; Tollerud et al. 2008, Walsh et al. 2009, |SB et
al.2010)
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Vinfall [km/s] Image courtesy of James Bullock

* Missing satellites: persists to today, at some level. May be
explained by reionization suppression + inefficient galaxy formation
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